NAME:

Math 125 Exam 3

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. Note that you must do at least 10 problems correctly to get 100. Write neatly and legibly in the space provided. SHOW YOUR WORK!

Core Problems

1. Convert to radians if the angle θ is given in degrees, otherwise convert to degrees.

a)
$$\theta = 20^{\circ}$$
 [2 pts]

b)
$$\theta = -3^{\circ}$$
 [2 pts]

c)
$$\theta = -\frac{\pi}{9}$$
 [2 pts]

d)
$$\theta = 2$$
 (radians) [2 pts]

e)
$$\theta = \pi^{\circ}$$
 (degrees) [2 pts]

2. Solve the equation
$$e^{3x} - 3e^{2x} = 10e^x$$
 for x. [10 pts]

3. a) Use the properties of logarithms to expand the expression $\log \frac{100x^3\sqrt[3]{5-x}}{2(x+6)^3}$ [5 pts]

b) Use the properties of logarithms to condense the expression $3\ln(\sqrt[3]{x-5}) + 4\ln(\sqrt[4]{x+5}) - \ln(x^2 - 25)$ [5 pts]

4. If (-2, $\sqrt{5}$) is a point on the terminal side of an angle θ , find the exact value of the following trigonometric functions.

a) $\sin \theta$ [2 pts]

b) $\cos\theta$ [2 pts]

c) $\operatorname{Tan} \theta$ [2 pts]

d) Csc θ [2 pts]

e) $\operatorname{Sec} \theta$

[2 pts]

5. Sighting the top of a building, a surveyor measured the angle of elevation to be 45°. The transit is 6 feet above the ground and 200 feet from the building. Find the building's height. [10 pts]

6. Use your knowledge of the graph of the function $f(x) = \log_2 x$ to sketch the graph of the function $g(x) = -1 + \log_2(x-2)$. What is the graph's x-intercept? What is the vertical asymptote? Determine domain and range.

[10 pts]

7. Solve the logarithmic equation $\log_3(x-4) + \log_3(x+4) = 2$. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. [10 pts]

8. Find the exact value of $Sin(\frac{\sqrt{2\pi}}{3}Cos(\frac{\pi}{4}))$. Note that you must give the exact answer to get full credit. [10 pts]

9. Find the reference angle for each angle.

a) 210° [2 pts]

b)
$$\frac{11\pi}{4}$$
 [2 pts]

c) -250° [2 pts]

d)
$$\frac{-13\pi}{3}$$
 [2 pts]

e) 351° [2 pts]

10. A bicycle has wheels, whose <u>diameter</u> is 1 meter in length. If the wheels rotate at a rate of 1300 revolutions per hour, how far will the bicycle have traveled in 30 minutes? [10 pts]

Extra-Credit

11. a) Prove the identity
$$\log_a MN = \log_a M + \log_a N$$
 [2 pts]

b) Prove the identity
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$
 [2 pts]

c) Prove the identity
$$\log_a M^r = r \log_a M$$
 [2 pts]

d) Prove the identity
$$\log_a M = \frac{\log_b M}{\log_b a}$$
 [4 pts]